STAT-X Element Technology
Proven Performance for critical Applications

The extensive use of low conductivity fluids significantly increases the likelihood of electrostatic discharge (ESD) making its prevention imperative. Now more than ever, innovative element technology is required to protect critical systems from catastrophic failure at the hands of ESD.

Proven performance shows that Stat-X is the only filter element technology capable of preventing both electrostatic charging (ESC) and discharging (ESD) phenomena under any and all operating conditions, including:

- Low temperature cold start (T = 30°F/-1°C)
- Extremely low oil conductivities (5 pS/m or less)
- High flow flushing operations
- Hydraulic loads well above 0.02 L/min/cm² (cf. normal operation)

This results in:

- Charge mitigation for all applications (competitor versions are electrical conductive, effective in limited applications)
- Reduction of oil degradation products (varnish)
- Increased oil service intervals
- Longer service life of bearings and prevention of bearing corrosion
- Safe operation in explosive atmosphere
- Reduction of unplanned downtimes
- Reduction of maintenance costs
- Longer maintenance intervals
- Maximum safety for employees and machines, due to proven reduction of electrostatic arcing

Our solution eliminates static electricity at the source thereby preventing costly performance reduction, equipment failure, and serious safety hazards to both equipment operators and system components.

Industry Application Examples

Combined Cycle Power Plants
- Liquid Fuel
- Gas and Steam Turbine Lube Oil
- Jacking Systems/Control Fluids
- Seal Oil

Injection Molding Systems

Hydrostatic Drive Systems

Hydroelectric Power Plants
- Jacking Systems/Control Fluids
- Turbine Lubrications

Material Handling
- Fork lifts in cold storage

Industrial Turbines
- Steam Turbine Lube Oil
- Gas Turbine Lube Oil
- Jacking Systems/Control Fluids
<table>
<thead>
<tr>
<th>HYDAC Filter Model Code</th>
<th>Application Input Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.01.18 D 20 XSX /-2.625</td>
<td>Elements Per Lube Skid 6 elements</td>
</tr>
<tr>
<td>Net Price to Plant</td>
<td>Current Oil Life 2.0 years</td>
</tr>
<tr>
<td>Competitor Filter Brand</td>
<td>Expected Oil Life W/Stat-X 5.0 years</td>
</tr>
<tr>
<td>Competitor Filter Model Code</td>
<td>Lube Skid Oil Volume 3,000 gal</td>
</tr>
<tr>
<td>Competitor Filter Cost</td>
<td>Oil Disposal Cost per Gallon $1.55</td>
</tr>
<tr>
<td>Varnish Mitigation Unit Cost</td>
<td>New Oil Cost Per Gallon $8.00</td>
</tr>
<tr>
<td>VMU Service Elements</td>
<td>Production Cost Per Hour $10,000.00</td>
</tr>
<tr>
<td>Element Changes Per Year</td>
<td>Production Downtime/Year 12 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDAC Filter Model Code</th>
<th>Application Input Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.01.18 D 20 XSX /-2.625</td>
<td>Elements Per Lube Skid 6 elements</td>
</tr>
<tr>
<td>Net Price to Plant</td>
<td>Current Oil Life 2.0 years</td>
</tr>
<tr>
<td>Competitor Filter Brand</td>
<td>Expected Oil Life W/Stat-X 5.0 years</td>
</tr>
<tr>
<td>Competitor Filter Model Code</td>
<td>Lube Skid Oil Volume 3,000 gal</td>
</tr>
<tr>
<td>Competitor Filter Cost</td>
<td>Oil Disposal Cost per Gallon $1.55</td>
</tr>
<tr>
<td>Varnish Mitigation Unit Cost</td>
<td>New Oil Cost Per Gallon $8.00</td>
</tr>
<tr>
<td>VMU Service Elements</td>
<td>Production Cost Per Hour $10,000.00</td>
</tr>
<tr>
<td>Element Changes Per Year</td>
<td>Production Downtime/Year 12 hours</td>
</tr>
</tbody>
</table>

Increased Oil & Maintenance Costs (Yearly Average)

- Expected Oil Life: 2.00 years
- Yearly Oil Cost: $12,000.00
- Yearly Cost to Dispose oil: $2,325.00
- Flushing Charges Per Year: $25,000.00
- Yearly Mechanical (Servo Valve) Failures: $3,500.00

Losses Due to Downtime and Failure to Start

- Lost Production Hours Per Year: 12 hours
- Lost Production Due to Component Failure: 0 hours

Yearly Lost Profit

$184,285.00

Yearly Lost Profit

$16,702.00